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ABSTRACT 

This paper presents a survey of computational kits that 

enable young children (ages 7 years old and under) to explore 

computing ideas and practices. We examined physical, 

virtual, and hybrid kits across three different perspectives: 

how they are designed, how they support children to explore 

computational concepts and practices, and how they enable 

children to engage in a range of projects and activities. Based 

on our analysis, we present design suggestions and 

opportunities to expand the possibilities in how children can 

engage in computing, what kinds of projects children can 

make, and what kinds of computational ideas children can 

explore.  
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ACM Classification Keywords 
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toolkits   • Applied computing ~ Interactive learning 

environments 

INTRODUCTION 
For more than a decade, education researchers, policymakers, 

and industry leaders have recognized the importance of 

helping young people cultivate computational thinking, or 

the ability to use concepts from computer science to solve 

problems and understand the world in new ways [37,54]. 

These concepts include how to think algorithmically, to 

break down complex ideas into smaller parts, or to uncover 

issues or “bugs” in instructions. Jeannette Wing who 

popularized the phrase argues that computational thinking 

“represents a universally applicable attitude and skill set 

everyone, not just computer scientists, would be eager to 

learn and use” [54]. As more of our everyday activities are 

influenced by computing, such as transportation, banking, 

and entertainment, computational thinking can be useful for 

everyone to participate in our digitally mediated society.     

While many technologies have emerged to support youth in 

exploring computational concepts and practices, 

opportunities in early childhood are especially promising to 

cultivate interests early in computing as well as to support 

the development of social, emotional, and cognitive 

milestones [3,9]. Many studies have shown that early 

interventions can have compounding effects later in life and 

influence personal and academic outcomes [33]. Early 

exposure can also help mitigate barriers to participation in 

computing. For example, Master et al. [32] found that girls 

as young as 6 years old believe that boys are better at robotics 

and programming, but exposure to coding and robotics can 

moderate these stereotypes and help to improve their sense 

of self-efficacy. 

In this paper, we present a survey of computational kits and 

toys, which we define as technologies that were designed to 

enable children to explore computational concepts and 

practices. We collected kits that were developed in academic 

and/or commercial contexts and examined them across three 

perspectives: their design features, their support for the 

exploration of computational concepts and practices, and 

their expressivity, or how well a kit supports various projects 

and explorations. We end by discussing the opportunities for 

designing computational kits for young children to cultivate 

computational thinking.   

METHODS 

Collecting kits 

We examined computational kits from both academic and 

commercial venues in this survey. The earliest designs of 

computational kits for children date back to the 1970s and 

started in research labs. The Logo turtle robot and Slot 

Machines are two of the earliest kits that supported children 

to explore computational thinking [35]. In the recent decade, 

many research projects of computational kits have gone out 

of research labs and become publicly accessible through 

museum exhibits or commercial products. Because of this 

history in academia, we began our review by identifying 

some representative research projects of computational kits 

for young children, such as ScratchJr [16], Tern [22], and 

KIBO [50]. Then we examined references from their 

published papers to discover more kits. To broaden our 

survey, we searched for publications in the ACM digital 

library using keywords from the papers of these 

representative projects, such as “computational toys”, 

“programming”, “early childhood”, “education”, and 

“STEM”. To find existing kits in commercial venues, we 

searched for kits on online product platforms Amazon and 

Target. We used the following keywords, as recommended 

by Amazon, to search for kits: “coding toys”, “programming 
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toys”, “coding for kids”, and “STEM toys”. We found kits 

on Target using pre-defined categories on their platform, 

such as “coding and STEM” [51]. Based on reviewer 

feedback, we also looked into kits in Purdue 2017 

Engineering Gift Guide [26] and Ehsan and colleagues’ 

survey of computational apps [13]. The Purdue 2017 

Engineering Gift Guide is a collection of toys, games, books, 

and apps designed for promoting engineering thinking and 

design in children ages 3-18. We reviewed kits that were 

labeled with “Coding/Programming” and “Computational 

Thinking”. Some of the surveyed kits in literature have 

already been commercialized or made public, such as KIBO, 

roBlocks [47], and ScratchJr.  For such kits, our analysis 

takes into consideration both the published papers about 

these kits and the information provided by sellers or the 

project’s product page. 

Filtering kits 

Among the collected kits, we curated a set of kits that met 

the following two criteria: (1) the recommended age group 

was 7 years old and under; and that (2) one of the claimed 

goals of a kit was to enable children to explore computer 

programming, computational thinking, or other computer 

science concepts and practices. To focus our analysis, we 

also excluded the following: kits that do not provide a 

recommended age group, such as Blockly Games [18]; and 

kits that may involve certain computational thinking but the 

main purpose is not centered on computational skills, such as 

Topobo [44], a construction kit with kinetic memory, and 

System Blocks [57] which is focused on system dynamics 

simulation.  

Based on the two filtering criteria, we selected 34 kits, which 

are described in Table 1. We organized the kits based on their 

physical features and categorized them as: physical, virtual, 

and hybrid kits. Physical kits are the kits whose components 

are all tangible, such as KIBO, which consists of a physical 

robot and a set of tangible programming blocks. Physical kits 

can be further divided into physical kits with electronics and 

physical kits without electronics, such as the board game 

Robot Turtles [48]. Virtual kits are PC and/or mobile-device-

based applications without physical components, such as 

ScratchJr, a tablet-based application for young children to 

create interactive stories. Hybrid kits consist of both physical 

and virtual parts, such as Strawbies [24], which asks children 

to play a video game by manipulating tangible command 

tiles. Hybrid kits can also be classified into two subcategories 

based on the form of programming blocks: kits that consist 

of virtual programming blocks, or kits that consist of tangible 

programming blocks.  

Physical kits 

with electronics 

Curlybot [17], Tangible Programming 

Bricks [34] Electronic Blocks [56], 

roBlocks [47] or Cubelets [36], Dr. 

Wagon [6], KIBO [50], Torino [52],  

Cubetto [42], Plobot [41], Robot 

Mouse [29], Code-a-pillar [15], Bee-

Bot [53], Pro-Bot [58] 

Physical kits 

without 

electronics 

Robot Turtles [48], Hello Ruby [31] 

Virtual kits 

ScratchJr [16], LightBot [30], Move 

the Turtle [38], Bitsbox [59], Cargo-

Bot [60], Codeable Crafts [61], 

RoboZZle [62], Run Marco! [63], The 

Foos [64] 

Hybrid kits 

with virtual 

programming 

blocks 

Dash & Dot [55], Cozmo + Code Lab 

[65], Thymio Robot [66], 

meeperBOTS [67], COJI [68] 

Hybrid kits 

with tangible 

programming 

blocks 

Digital Dream Lab tabletop puzzle 

block system [40], Strawbies [24], 

Roberto [20], Puzzlets [12], Blue-Bot 

[69] 

Table 1. The analyzed computational kits in this paper 

Analyzing kits 

We examined the remaining kits from three perspectives: 

design features, computational thinking, and expressivity. 

In the first perspective, we focused on a kit’s design features. 

Physical features can strongly influence how children 

perceive and use a computational kit. For example, in a study 

comparing tangible and virtual programming interfaces, 

Horn et al. [21] found that children were more likely to 

engage with tangible interfaces. In another study comparing 

tangible and virtual programming environments, Horn and 

colleagues [19] suggested that hybrid interfaces can enable 

children and educators to decide for themselves what makes 

the most sense for their particular situation. 

In the second perspective, we examined how a kit supported 

computational concepts and practices using the 

computational thinking framework by Brennan and Resnick 

[5]. This framework included seven computational concepts 

(Sequences, Events, Parallelism, Loops, Conditionals, 

Operators, and Data) and four computational practices (being 

incremental and iterative, testing and debugging, reusing and 

remixing, abstracting and modularizing), which are briefly 

summarized in Table 2 and Table 3, respectively. While 

there have been many discussions and multiple definitions of 

computational thinking [27], Brennan and Resnick’s 

framework is based on and includes concrete experiences of 

children creating with programming, particularly in the 

Scratch environment. For instance, Brennan and Resnick 

used an example of programming a cat sprite in Scratch to 

move to illustrate Sequences in the framework. By putting 

together a sequence of motion programming blocks, the cat 

can move across the screen based on the coding instructions 
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[5]. These concrete examples of children’s programming 

experiences helped to examine how kits may support 

different computational thinking concepts and practices. 

Concept Description 

Sequence Identifying a series of steps for a task 

Loops 
Running the same sequence multiple 

times 

Events 
One thing causing another thing to 

happen 

Parallelism Making things happen at the same time 

Conditionals Making decisions based on conditions 

Operators Identifying a series of steps for a task 

Data Storing, retrieving, and updating values 

Table 2. Computational concepts 

Practices Description 

Experimenting 

and iterating 

Developing a little bit, then trying it 

out, then developing more 

Testing and 

debugging 

Making sure things work – and finding 

and solving problems when they arise 

Reusing and 

remixing 

Making something by building on 

existing projects or ideas 

Abstracting 

and 

modularizing 

Exploring connections between the 

whole and the parts 

Table 3. Computational practices 

In the third perspective, we examined how expressive a kit 

can be. We define expressivity as how well a kit enables kids 

to create a wide range of projects. In their reflection on 

designing construction kits for kids, Resnick and Silverman 

highlighted the importance of kits having “wide walls”, or 

enabling children to explore and create across a range of 

possibilities to express their many ideas and interests [45]. 

To evaluate the expressivity of a kit, we examined the 

activities the kit supports and the openness of these 

activities—whether these activities are predefined by the 

designers (e.g. kids must follow a predetermined challenge 

or set of instructions) or if kids can define their own goals 

and projects (e.g. kids can explore different possibilities with 

a kit). 

For each perspective, we analyzed the information provided 

in published papers, a kit’s project website, and/or a product 

page from the seller.  

Limitations 

The potential of a kit to support computational thinking or a 

range of activities largely depends on how children and 

facilitators use it. Our analysis of a kit is based on the 

description by its designers, which may not necessarily 

reflect what might happen when children interact with it. A 

playtest will be needed to evaluate a kit’s intentions. Our 

analysis, therefore, may overestimate or underestimate a 

kits’ potential as a tool to support computational thinking or 

to enable the exploration of a wide range of projects. In 

addition, even though we tried to review as many kits as 

possible in this study, we understand that we may have 

missed some computational kits which satisfy our filtering 

criteria. However, we believe our curated set of kits is 

sufficient to help us explore commonalities as well as 

imagine new possibilities. 

In the next section, we use these three perspectives to identify 

common design strategies and features across the kits. In the 

Discussion, we build on this survey to highlight 

opportunities for further exploration of computational kits 

for young children. 

FINDINGS 

In this section, we examine the surveyed kits through three 

perspectives. The first perspective explores the design 

features of the kits. The second perspective examines what 

kinds of computational concepts and practices are supported 

by different kits, and how these concepts and practices are 

supported. The third perspective focuses on the expressivity 

of the kits.        

Perspective 1: Examining design features 

Typically, a computational kit consists of a set of 

programming blocks, a robot or sprite controlled by the 

programming blocks, and some supporting materials. For 

perspective 1, we analyzed the characteristics of the 

programming blocks, programmed robots or sprites, and 

supporting materials. 

Programming syntax and semantics 

All the surveyed kits either use physical blocks or graphical 

blocks to create programs. For most physical kits and hybrid 

kits, the programming blocks and robot are separated, but 

there are a few kits with programming blocks embedded in 

the robot in the form of buttons. The Bee-Bot [50] and Blue-

Bot [69], for example, have directional buttons on the top of 

the bee robots and children can press these buttons to 

program its movement, see in Figure 1 (a). The concept of a 

block as a “puzzle piece” is a frequently-used form for both 

tangible and graphical programming blocks, such as the 

programming blocks of Strawbies, ScratchJr, Cozmo+Code 

Lab [65], Codeable Crafts [61], and Run Marco! [63]. Figure 

1 (b) and (c) show the puzzle-form programming blocks of 

Strawbies and ScratchJr, respectively. 
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Figure 1. The programming blocks of (a) Bee-Bot [53], (b) 

Strawbies [24], and (c) ScratchJr [70]. 

Most of the programming commands included by kits 

involve motion such as moving forward or turning left. Some 

kits include other command blocks such as function blocks, 

data blocks, and special-effect blocks. For example, in 

Cubetto [42], children can create a small code block and call 

the block in the main function through a function block, as 

shown in Figure 2. roBlocks includes sensor blocks of light, 

sound, touch, and distance which children can use to build 

an interactive robot. Strawbies allows children to create 

special animations for the game sprites, such as tornado and 

flashlight effects. In addition to basic motion commands, 

COJI [68] also allows children to program the expression of 

the COJI  robot through inserting (a sequence of) emojis in a 

block of code. 

 

Figure 2. An illustration of the function block of Cubetto [42]. 

A small function block A is called in the main function by the 

blue function tile B in this example. 

Programmed robots or sprites 

Most kits enable children to program either physical robots 

or virtual sprites. Typically, for kits with physical robots, 

only one robot is programmed each time, while for kits with 

virtual sprites, several sprites can be programmed at the same 

time. All of the physical robots move around using a wheel. 

Some robots borrow the forms of animals, such as Robot 

Mouse, Bee-Bot, and Blue-Bot. Sensors, lights, and sound 

effects are embedded in some robots to enrich the robots’ 

interaction with the environment and/or visualize how a 

robot is executing a program step-by-step, such as Code-a-

pillar [15], Electronic Blocks [56], and Thymio Robot.  

Most virtual kits are game-based, which require children to 

create programs to control game sprite(s) to finish certain 

tasks. For example, LightBot [30] is a coding puzzle game 

that asks children to program the movement of a virtual robot 

and light up bulbs. With Move the Turtle, children can 

program the motion of a turtle sprite to complete different 

tasks like drawing polygons. A few virtual kits enable other 

activities like ScratchJr and Codeable Crafts, which support 

creating interactive stories and animations; and Bitsbox [59], 

which guides children to create their own apps. 

Supporting materials 

Kits typically include supporting materials, such as maps, 

craft materials, and storybooks, to enrich the playing and 

learning experience for children. For example, Cubetto 

provides physical adventure maps, which children can use to 

move around the robot and facilitate their storytelling. 

Additionally, children can also attach pens to the Cubetto 

robot and draw its moving tracks, and even decorate the robot 

with craft materials. ScratchJr [70] and Thymio Robot 

provide activity, curriculum, and assessment designs for 

their use in classroom settings for teachers and students. 

Virtual kits usually have rich scenes and different playing 

levels for children to engage with, such as Cargo-Bot [60] 

and The Foos [64]. 

Perspective 2: Examining computational concepts and 
practices 

One of the main goals of this survey is to examine how 

existing kits enable young children to explore computational 

thinking ideas. We use the computational framework from 

Brennan and Resnick [5] to examine what kinds of 

computational concepts and practices may be explored by 

children and how each kit supports that exploration. This 

framework includes seven computational concepts 

(Sequences, Events, Parallelism, Loops, Conditionals, 

Operators, and Data) and four computational practices (being 

incremental and iterative, testing and debugging, reusing and 

remixing, abstracting and modularizing), see Table 2 and 

Table 3. 

Computational concepts 

Sequences are the most widely supported computational 

concept among the surveyed kits. Many kits support this 

concept by enabling children to express their ideas through 

programming the motion of physical robots or virtual sprites. 
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A few kits also support Sequences by programming the 

robots’ light and/or sound effects, such as Dash & Dot [55]. 

Loops are another widely supported computational concept. 

In tangible programming environments, Loops are realized 

through encapsulating a sequence of blocks between a start 

repeat block and an end repeat block, as shown in Figure 3 

(a). In graphical programming environments, repeat blocks 

are typically represented as a “C” shape and repeatedly run 

the blocks inside this shape, as shown in Figure 3 (b).   

 

Figure 3. (a) The repeat and end-repeat blocks of KIBO [28]; 

(b) The repeat block of ScratchJr [70], which is a rotated “C” 

shape. 

Events are typically supported by start or trigger buttons. For 

example, with Cubetto, children can press a blue button (the 

button C in Figure 2) on the control board to make the robot 

execute their created program. Some kits also support Events 

through the interaction between sprites or robots, such as 

Dash & Dot. The robot Dot can cause robot Dash to move, 

light up, or play a sound. Most Conditionals are supported in 

an implicit way, namely that children are not directly 

exposed to “if-then” statements, but rather program 

instructions based on different conditions or events. We 

found three main approaches: (1) sensors are usually 

embedded in physical robots to sense different 

environmental conditions so that the robots could be 

programmed to react accordingly; (2) for physical robots 

without sensors, maps are usually provided for children to 

decide how the robots would react to different conditions on 

a map; and (3) for virtual platforms, a series of commands or 

special effects like animations, sounds, and light effects 

could be triggered when sprites interact with other objects on 

the screen. A few kits also provide “if” blocks with built-in 

logic blocks to create a conditional code, such as Dr. Wagon 

as shown in Figure 4.   

 

Figure 4. The if blocks of Dr. Wagon [6]: the left and right 

ones. In this case, if the robot is above a patch of red, it will 

turn left. 

Parallelism is primarily supported by virtual and hybrid kits 

through controlling the motion of several sprites or robots 

simultaneously or programming the motion, light and sound 

effects of a sprite at the same time. For example, with Dash 

& Dot, children can program the robots Dot and Dash to 

interact with each other; two Curlybots [17] could be 

synchronized to communicate and run together; and in 

ScratchJr, several sprites can be programmed to act 

simultaneously, or a sprite can be programmed to move, play 

sound, and change size at the same time.   

Data is supported by adjusting parameter values such as the 

motion, rotation, and loop increments. As shown in Figure 1 

(b), in Strawbies, a Data block “2” is connected to the “walk” 

block. Five physical kits in the survey, i.e. Robot Mouse, 

Bee-Bot, Blue-Bot, Pro-Bot, and Cubetto, implicitly support 

Data by asking children to repeatedly press the same motion 

button for a certain number of times, or connecting the same 

coding blocks together to set parameter values. Operators are 

the least represented computational concept across all the 

kits surveyed. In roBlocks, which includes logic operators 

like “Not”, “And”, and “Or,” when an “And” block is added 

to the center of two sensors, the corresponding Actuator 

block can operate only when both sensors are activated. 

Additionally, Move the Turtle and Puzzlets Starter Pack 

Game [12] include data manipulation, which involves basic 

mathematical skills, such as adding and subtracting.  

Computational practices 

The four computational practices are (1) being incremental 

and iterative, (2) testing and debugging, (3) reusing and 

remixing, and (4) abstracting and modularizing. All the 

surveyed kits support being incremental and iterative by 

allowing mistakes and supporting an unlimited number of 

attempts. Children can continuously test their code during 

the design process to check if their code works properly and 

debug the problems if something goes wrong.  

To assess remixing and reusing, we looked for features that 

supported children to share and build on others’ projects. 

Most of the surveyed kits do not explicitly support this 

feature. ScratchJr includes a localized sharing feature that 
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enables children to share projects across devices. Cargo-Bot, 

a puzzle game which asks children to program a robot to 

move crates, allows children to record the playing process 

and share their solutions on YouTube.  Compared to the other 

three computational practices, relatively few kits support 

abstracting and modularizing. The ones do support it do so 

by building a small block of code which can be called in 

another code sequence. For example, children can build a 

small function in Cubetto, Light Bot, RoboZZLe, and The 

Foos. The Digital Dream Lab tabletop puzzle block system 

also supports the computer science concepts of class and 

object. 

Perspective 3: Examining Expressivity 

We define expressivity as the extent to which a kit enables 

children to explore a range of projects based on their diverse 

ideas and interests. To examine a kit’s expressivity, we 

reviewed its range of activities and possibilities based on 

what is claimed by a kit’s designers and manufacturers.  

Kits range in the level of instructions or pre-determined 

activities. For example, BitsBox provides step-by-step 

instructions for children to create a variety of pre-determined 

games.  With Lightbot, children use a subset of coding 

blocks to program a virtual robot to light up all the blue 

squares in a scene, as shown in Figure 5. Some kits use 

narrative as a way to structure children’s interactions with 

computational ideas. In Roberto, children can read a physical 

storybook and, at different points in the story, program 

characters using a mobile device and physical programming 

block stickers [20]; In Hello Ruby, children can follow the 

adventures of a young girl and her friends. After each 

chapter, children can engage in different activities that allow 

them to explore computational concepts and skills [31].  

A common activity among many kits is moving a robot or 

sprite around a space. Some kits aim to constrain a robot’s or 

sprites movement with the goal of engaging children in 

challenges. In most game-based virtual and hybrid kits like 

Light Bot, Move the Turtle, Robozzle, and Strawbies, 

children are tasked with programming sprites to move 

through a maze or to move within a space to collect items 

before moving onto other levels. Other kits include resources 

that facilitate movement within a map of different regions. In 

Cubetto, children can move a wooden robot within a flat 

adventure map that has illustrated lakes and grassy areas. 

 
Figure 5. A screenshot of Lightbot game. In this case, players 

are required to use the bottom four blocks to program the 

Lighbot to light up the blue square. 

Many physical kits support some degree of free exploration, 

enabling children to decide the routes and destinations for a 

robot, such as Thymio Robot, Cozmo+Code Lab, and 

BeeBot. Kits that support storytelling typically allow open-

ended exploration of this trajectory. While the Roberto 

storybook provides a beginning, it asks children to develop 

their own endings. In ScratchJr and Codeable Crafts, 

children can create any kind of story. Some kits encourage 

children to personalize their robots by decorating them with 

craft materials, such as Cubetto, Dr. Wagon, and 

meeperBOTS.  

While some kits may support individual and group 

engagement such as KIBO, only a few kits claim to be 

explicitly designed for group play. For example, Robot 

Turtles requires at least 2 players at the same time; Hello 

Ruby includes activities designed to support kids and parents 

to work together, and Torino  [52] supports collaborative 

learning for children with mixed-visual abilities, i.e. 

visually-impaired children can play Torino blocks with 

children without visual impairments. 

DISCUSSION 

In this section, we discuss design opportunities for 

computational kits for young children. As we discuss these 

possibilities, we describe additional kits or technologies that 

we found inspiring. For every possibility discussed, we need 

to bear in mind that a kit needs to be developmentally 

appropriate for young children. We also understand that new 

possibilities for kits may expand what is considered 

developmentally appropriate for young children [4]. 

Expanding how children code 

Most of the kits we examined use tangible or graphical 

blocks to support programming. It would be interesting to 

explore other forms of programming, such as gesture, body 

movement, and sound. One example is the video sensing 

feature in Scratch [25]. Children can create projects in 

Scratch that use a computer’s camera to simulate object and 

Learning & Literacy IDC 2018, June 19–22, 2018, Trondheim, Norway

294



gesture recognition. For example, the Scratch project Simple 

Bubbles [8] uses the camera to capture hand movements as 

the input to pop the bubbles. Even though video sensing is 

an input method rather than a programming method in this 

example, such interaction can inspire new programming 

methods. 

Additionally, many of the surveyed physical and hybrid kits 

have separate programming blocks and robots or sprites, and 

most of their programming block designs adopt either tile or 

cube forms. While a few kits have different designs of coding 

blocks, such as the embedded coding buttons on Blue-Bot, it 

would be interesting to explore how coding blocks could be 

designed in other forms, particularly beyond tiles or cubes. 

For example, Ozobot robot [71] allows children to program 

its motion by drawing lines of different colors. Tangible 

Programming with Train [35] uses code bricks which are 

also part of the train track to program a train’s motion. 

Instead of having separated coding blocks and controlling 

robots, the programming blocks of roBlocks [47] can be 

stacked together to create a robot which is also controlled by 

these blocks. 

Expanding what children can code 

In a paper reflecting on the changing nature of children’s 

programming, Michael Eisenberg and colleagues discussed 

expanding the possibilities to include more programmable 

materials, settings, and surfaces [14]. These new possibilities 

included embedding computing in everyday materials and 

objects like paper, textiles, and other media to enable people 

to engage in computing in more familiar and natural ways. 

With Chibitronics Love to Code [72], children can build 

interactive paper circuits and program LEDs, using a 

microcontroller called the Chibi Chip. Proctor and 

colleagues built an interactive fiction web application that 

combined textual literacy and computational literacy [43]. 

By incorporating computational concepts like sequences, 

loops, and conditionals into interactive fiction games, 

readers can choose how storylines develop and unfold 

different story experiences. We also see possibilities to 

explore other programmable objects or phenomena, such as 

light, sound, or even people. One such example is Unruly 

Splats [2], where children can program a physical tile to light 

up or turn off when touched. As children interact with their 

programmed tiles, children can run around and jump on the 

tiles to play active games, essentially programming 

children’s body movements. With COJI robot, children can 

program the emotion expression on the screen of the robot. 

Music Blocks [35] uses sound as a programming medium, 

with which children can create a melody by inserting cubical 

blocks that represent different musical phrase into a music 

player. 

For virtual and hybrid kits that include one or more sprites, 

the user interfaces are highly homogeneous, i.e. either 

through a PC screen or a mobile-device screen. It would be 

interesting to explore other forms of interfaces that can 

enrich children’s interactions with computational kits, such 

as holographic projection, virtual reality (VR), and 

augmented reality (AR). These technologies have already 

been deployed to promote children’s learning and playing. In 

the Virtual Environment Interactions project, young people 

firstly learned dance moves,  then programmed similar dance 

moves for characters in VR [10]. An AR-based video-

modeling storybook was developed to help children with 

autism improve their perceptions and judgments of facial 

expressions and emotions [7].  

Finally, one of the construction kit principles proposed by 

Resnick and Silverman encourage designing for “wide 

walls”, or enabling children to explore many different 

projects to represent their different interests [42]. We see the 

potential for kits to expand their expressivity, or the range of 

activities that children can explore and engage in. While 

step-by-step instructions or specific challenges can help to 

scaffold children’s learning experiences, more open-ended 

systems can enable children to express ideas, develop their 

own goals, and pursue more personally meaningful projects. 

Expanding who can code 

Most of the surveyed kits, especially the virtual kits, are 

optimized for individual engagement. While some kits 

support sharing projects across a local network of mobile 

devices, an online community can expand who children can 

learn with. In the Scratch online community, children can get 

feedback, work on projects together, and learn from other 

creators [46]. Remixing, or building on others’ project can 

be a meaningful pathway to support computational thinking 

[11]. 

In addition to expanding children’s networks, computational 

kits could also consider more explicitly the kinds of roles that 

parents or other adult caregivers can play. Hello Ruby, for 

example, designed activities with children and adult 

caretakers in mind. Online platforms could also create spaces 

for parents and adult caregivers to share their experiences in 

working with their children and learn about more 

opportunities for their families. 

Finally, we see broadening participation in computing as an 

important consideration when exploring new possibilities for 

kits. We especially want to highlight the opportunities for 

kits to support children with disabilities, such as children 

with visual, hearing, and physical disabilities. Among the 

surveyed kits, only Torino is specifically designed to help 

visually-impaired children learn computational concepts and 

skills. We suggest that more kits be designed to meet the 

needs of children with disabilities. Some researchers have 

suggested design principles and strategies for designing 

interactive technologies for children with disabilities. For 

example, Meryl Alper and colleagues [1] suggested that, in 

addition to the three dimensions— “low floors”, “high 

ceilings”, and “wide walls”—proposed by Resnick and 

Silverman [45], designers should consider the fourth 

dimension of “reinforced corners”, namely to support 

exceptional children who can thrive at the widest walls, 

highest ceilings, and lowest floors. Juan Pablo Hourcade 
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summarized suggestions for designing participatory 

technologies and activities for children with autism, such as 

engaging children deeply, involving stakeholders, and 

designing the ecology around the technology [23]. These 

strategies can serve as guiding principles for designing 

computational kits for young children with disabilities. 

Expanding what children can explore 

Some of the computational concepts such as Sequences, 

Loops, Events, and Conditionals are well supported by 

existing kits. More specifically, Sequences are supported by 

programming a series of instructions for a robot or sprite; 

Loops are supported through repeat blocks that can execute 

a block of code repeatedly; Events are achieved by a physical 

or graphical start button that triggers the movement of 

programmed robots or sprites; Conditionals are supported 

through programming how sprites or robots react to certain 

conditions, which are typically in response to sensors or 

adventure maps; Data is primarily supported by adjusting the 

values of a parameter, such as the distance in motion or how 

many times a loop repeats; Parallelism can be achieved 

through programming more than one robot or sprite within a 

kit at the same time, or coordinating the motion, light, and 

sound effects of the kit simultaneously. 

It would be interesting to explore how these computational 

concepts can be supported through other approaches. For 

example, how could visual, auditory, or tactile objects be 

programmed to support Sequences and Loops in addition to 

a robot’s or sprite’s motion? Using BlockyTalky [49], 

children can create interactive music systems or digital 

instruments while exploring concepts such as distributed 

systems. For Events, what other kinds of actions, beyond a 

start and stop button, can children engage in to trigger actions? 

Depth and 3D sensors like the XBox Kinect [73] can open 

up possibilities for people to use body movements or 

gestures to trigger events.  

While a computational kit does not necessarily need to 

support most computational concepts and practices, there are 

opportunities for exploring the less prevalent computational 

concepts and practices, such as Operators. It would be 

interesting to explore the possibilities with logical operations 

such as “And” and “Or”. While many kits support 

computational practices like experimenting and iterating, we 

see potential to more explicitly support practices such as 

debugging and abstraction. For example, Robo-blocks [39] 

is designed to support debugging activities for early primary 

school children through the use of debugging flags to 

identify and mark coding problems. As we explore more 

ways to support children to explore computational concepts 

and practices, we can open up more opportunities for 

children to create, invent, and express themselves in new and 

empowering ways. 

CONCLUSION 

Cultivating computational thinking can enable young 

children to engage with powerful ideas, to express 

themselves in new ways, and to understand the changing and 

increasingly digital world around them. Our survey provides 

an overview of computational kits for young children (ages 

7 and under) that have emerged across academia and industry. 

The findings reveal the commonalities across existing kits 

and highlight ways for designers and researchers to expand 

the possibilities for children to create, explore, and play with 

computing. The surveyed kits span across physical, virtual, 

and hybrid kits and were examined across three perspectives: 

design features, how children could explore computational 

concepts and practices, and what range of activities or 

projects children could engage in.  

When examining their design features, kits often used blocks 

or puzzle-pieces to represent code that controls robots or 

virtual sprites. The most common computational concepts 

that children could explore were sequences, loops, events, 

and conditionals. Finally, kits ranged in the activities and 

projects they enabled. Some were constrained to specific 

challenges such as moving through a maze, while some 

provided some scaffolds such as a narrative to structure the 

experience. Relatively few kits enabled more open-ended 

engagement and creation. 

Through our survey, we see possibilities for expanding how 

children can code, what they can code, who can code, and 

what they can explore. These possibilities include new 

modes of expression such as body motion or new media such 

as light and sound. We also see possibilities for who 

designers can better support, such as more explicit roles for 

adult caregivers and expanding possibilities for children with 

disabilities. Finally, while many kits enable the exploration 

of some computational concepts and practices, we see 

opportunities to expand how these concepts are supported as 

well as new concepts they could explore.  
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