
A Survey of Computational Kits for Young Children
Junnan Yu

University of Colorado Boulder

Boulder, CO USA

junnan.yu@colorado.edu

Ricarose Roque

University of Colorado Boulder

Boulder, CO USA

ricarose@colorado.edu

ABSTRACT

This paper presents a survey of computational kits that

enable young children (ages 7 years old and under) to explore

computing ideas and practices. We examined physical,

virtual, and hybrid kits across three different perspectives:

how they are designed, how they support children to explore

computational concepts and practices, and how they enable

children to engage in a range of projects and activities. Based

on our analysis, we present design suggestions and

opportunities to expand the possibilities in how children can

engage in computing, what kinds of projects children can

make, and what kinds of computational ideas children can

explore.

Author Keywords

Coding; early childhood; computational thinking.

ACM Classification Keywords

• Human-centered computing ~ User interface

toolkits • Applied computing ~ Interactive learning

environments

INTRODUCTION
For more than a decade, education researchers, policymakers,

and industry leaders have recognized the importance of

helping young people cultivate computational thinking, or

the ability to use concepts from computer science to solve

problems and understand the world in new ways [37,54].

These concepts include how to think algorithmically, to

break down complex ideas into smaller parts, or to uncover

issues or “bugs” in instructions. Jeannette Wing who

popularized the phrase argues that computational thinking

“represents a universally applicable attitude and skill set

everyone, not just computer scientists, would be eager to

learn and use” [54]. As more of our everyday activities are

influenced by computing, such as transportation, banking,

and entertainment, computational thinking can be useful for

everyone to participate in our digitally mediated society.

While many technologies have emerged to support youth in

exploring computational concepts and practices,

opportunities in early childhood are especially promising to

cultivate interests early in computing as well as to support

the development of social, emotional, and cognitive

milestones [3,9]. Many studies have shown that early

interventions can have compounding effects later in life and

influence personal and academic outcomes [33]. Early

exposure can also help mitigate barriers to participation in

computing. For example, Master et al. [32] found that girls

as young as 6 years old believe that boys are better at robotics

and programming, but exposure to coding and robotics can

moderate these stereotypes and help to improve their sense

of self-efficacy.

In this paper, we present a survey of computational kits and

toys, which we define as technologies that were designed to

enable children to explore computational concepts and

practices. We collected kits that were developed in academic

and/or commercial contexts and examined them across three

perspectives: their design features, their support for the

exploration of computational concepts and practices, and

their expressivity, or how well a kit supports various projects

and explorations. We end by discussing the opportunities for

designing computational kits for young children to cultivate

computational thinking.

METHODS

Collecting kits

We examined computational kits from both academic and

commercial venues in this survey. The earliest designs of

computational kits for children date back to the 1970s and

started in research labs. The Logo turtle robot and Slot

Machines are two of the earliest kits that supported children

to explore computational thinking [35]. In the recent decade,

many research projects of computational kits have gone out

of research labs and become publicly accessible through

museum exhibits or commercial products. Because of this

history in academia, we began our review by identifying

some representative research projects of computational kits

for young children, such as ScratchJr [16], Tern [22], and

KIBO [50]. Then we examined references from their

published papers to discover more kits. To broaden our

survey, we searched for publications in the ACM digital

library using keywords from the papers of these

representative projects, such as “computational toys”,

“programming”, “early childhood”, “education”, and

“STEM”. To find existing kits in commercial venues, we

searched for kits on online product platforms Amazon and

Target. We used the following keywords, as recommended

by Amazon, to search for kits: “coding toys”, “programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions

from Permissions@acm.org.

IDC '18, June 19–22, 2018, Trondheim, Norway

© 2018 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.

ACM ISBN 978-1-4503-5152-2/18/06…$15.00

https://doi.org/10.1145/3202185.3202738

Learning & Literacy IDC 2018, June 19–22, 2018, Trondheim, Norway

289

mailto:Permissions@acm.org
https://doi.org/10.1145/3202185.3202738

toys”, “coding for kids”, and “STEM toys”. We found kits

on Target using pre-defined categories on their platform,

such as “coding and STEM” [51]. Based on reviewer

feedback, we also looked into kits in Purdue 2017

Engineering Gift Guide [26] and Ehsan and colleagues’

survey of computational apps [13]. The Purdue 2017

Engineering Gift Guide is a collection of toys, games, books,

and apps designed for promoting engineering thinking and

design in children ages 3-18. We reviewed kits that were

labeled with “Coding/Programming” and “Computational

Thinking”. Some of the surveyed kits in literature have

already been commercialized or made public, such as KIBO,

roBlocks [47], and ScratchJr. For such kits, our analysis

takes into consideration both the published papers about

these kits and the information provided by sellers or the

project’s product page.

Filtering kits

Among the collected kits, we curated a set of kits that met

the following two criteria: (1) the recommended age group

was 7 years old and under; and that (2) one of the claimed

goals of a kit was to enable children to explore computer

programming, computational thinking, or other computer

science concepts and practices. To focus our analysis, we

also excluded the following: kits that do not provide a

recommended age group, such as Blockly Games [18]; and

kits that may involve certain computational thinking but the

main purpose is not centered on computational skills, such as

Topobo [44], a construction kit with kinetic memory, and

System Blocks [57] which is focused on system dynamics

simulation.

Based on the two filtering criteria, we selected 34 kits, which

are described in Table 1. We organized the kits based on their

physical features and categorized them as: physical, virtual,

and hybrid kits. Physical kits are the kits whose components

are all tangible, such as KIBO, which consists of a physical

robot and a set of tangible programming blocks. Physical kits

can be further divided into physical kits with electronics and

physical kits without electronics, such as the board game

Robot Turtles [48]. Virtual kits are PC and/or mobile-device-

based applications without physical components, such as

ScratchJr, a tablet-based application for young children to

create interactive stories. Hybrid kits consist of both physical

and virtual parts, such as Strawbies [24], which asks children

to play a video game by manipulating tangible command

tiles. Hybrid kits can also be classified into two subcategories

based on the form of programming blocks: kits that consist

of virtual programming blocks, or kits that consist of tangible

programming blocks.

Physical kits

with electronics

Curlybot [17], Tangible Programming

Bricks [34] Electronic Blocks [56],

roBlocks [47] or Cubelets [36], Dr.

Wagon [6], KIBO [50], Torino [52],

Cubetto [42], Plobot [41], Robot

Mouse [29], Code-a-pillar [15], Bee-

Bot [53], Pro-Bot [58]

Physical kits

without

electronics

Robot Turtles [48], Hello Ruby [31]

Virtual kits

ScratchJr [16], LightBot [30], Move

the Turtle [38], Bitsbox [59], Cargo-

Bot [60], Codeable Crafts [61],

RoboZZle [62], Run Marco! [63], The

Foos [64]

Hybrid kits

with virtual

programming

blocks

Dash & Dot [55], Cozmo + Code Lab

[65], Thymio Robot [66],

meeperBOTS [67], COJI [68]

Hybrid kits

with tangible

programming

blocks

Digital Dream Lab tabletop puzzle

block system [40], Strawbies [24],

Roberto [20], Puzzlets [12], Blue-Bot

[69]

Table 1. The analyzed computational kits in this paper

Analyzing kits

We examined the remaining kits from three perspectives:

design features, computational thinking, and expressivity.

In the first perspective, we focused on a kit’s design features.

Physical features can strongly influence how children

perceive and use a computational kit. For example, in a study

comparing tangible and virtual programming interfaces,

Horn et al. [21] found that children were more likely to

engage with tangible interfaces. In another study comparing

tangible and virtual programming environments, Horn and

colleagues [19] suggested that hybrid interfaces can enable

children and educators to decide for themselves what makes

the most sense for their particular situation.

In the second perspective, we examined how a kit supported

computational concepts and practices using the

computational thinking framework by Brennan and Resnick

[5]. This framework included seven computational concepts

(Sequences, Events, Parallelism, Loops, Conditionals,

Operators, and Data) and four computational practices (being

incremental and iterative, testing and debugging, reusing and

remixing, abstracting and modularizing), which are briefly

summarized in Table 2 and Table 3, respectively. While

there have been many discussions and multiple definitions of

computational thinking [27], Brennan and Resnick’s

framework is based on and includes concrete experiences of

children creating with programming, particularly in the

Scratch environment. For instance, Brennan and Resnick

used an example of programming a cat sprite in Scratch to

move to illustrate Sequences in the framework. By putting

together a sequence of motion programming blocks, the cat

can move across the screen based on the coding instructions

Learning & Literacy IDC 2018, June 19–22, 2018, Trondheim, Norway

290

[5]. These concrete examples of children’s programming

experiences helped to examine how kits may support

different computational thinking concepts and practices.

Concept Description

Sequence Identifying a series of steps for a task

Loops
Running the same sequence multiple

times

Events
One thing causing another thing to

happen

Parallelism Making things happen at the same time

Conditionals Making decisions based on conditions

Operators Identifying a series of steps for a task

Data Storing, retrieving, and updating values

Table 2. Computational concepts

Practices Description

Experimenting

and iterating

Developing a little bit, then trying it

out, then developing more

Testing and

debugging

Making sure things work – and finding

and solving problems when they arise

Reusing and

remixing

Making something by building on

existing projects or ideas

Abstracting

and

modularizing

Exploring connections between the

whole and the parts

Table 3. Computational practices

In the third perspective, we examined how expressive a kit

can be. We define expressivity as how well a kit enables kids

to create a wide range of projects. In their reflection on

designing construction kits for kids, Resnick and Silverman

highlighted the importance of kits having “wide walls”, or

enabling children to explore and create across a range of

possibilities to express their many ideas and interests [45].

To evaluate the expressivity of a kit, we examined the

activities the kit supports and the openness of these

activities—whether these activities are predefined by the

designers (e.g. kids must follow a predetermined challenge

or set of instructions) or if kids can define their own goals

and projects (e.g. kids can explore different possibilities with

a kit).

For each perspective, we analyzed the information provided

in published papers, a kit’s project website, and/or a product

page from the seller.

Limitations

The potential of a kit to support computational thinking or a

range of activities largely depends on how children and

facilitators use it. Our analysis of a kit is based on the

description by its designers, which may not necessarily

reflect what might happen when children interact with it. A

playtest will be needed to evaluate a kit’s intentions. Our

analysis, therefore, may overestimate or underestimate a

kits’ potential as a tool to support computational thinking or

to enable the exploration of a wide range of projects. In

addition, even though we tried to review as many kits as

possible in this study, we understand that we may have

missed some computational kits which satisfy our filtering

criteria. However, we believe our curated set of kits is

sufficient to help us explore commonalities as well as

imagine new possibilities.

In the next section, we use these three perspectives to identify

common design strategies and features across the kits. In the

Discussion, we build on this survey to highlight

opportunities for further exploration of computational kits

for young children.

FINDINGS

In this section, we examine the surveyed kits through three

perspectives. The first perspective explores the design

features of the kits. The second perspective examines what

kinds of computational concepts and practices are supported

by different kits, and how these concepts and practices are

supported. The third perspective focuses on the expressivity

of the kits.

Perspective 1: Examining design features

Typically, a computational kit consists of a set of

programming blocks, a robot or sprite controlled by the

programming blocks, and some supporting materials. For

perspective 1, we analyzed the characteristics of the

programming blocks, programmed robots or sprites, and

supporting materials.

Programming syntax and semantics

All the surveyed kits either use physical blocks or graphical

blocks to create programs. For most physical kits and hybrid

kits, the programming blocks and robot are separated, but

there are a few kits with programming blocks embedded in

the robot in the form of buttons. The Bee-Bot [50] and Blue-

Bot [69], for example, have directional buttons on the top of

the bee robots and children can press these buttons to

program its movement, see in Figure 1 (a). The concept of a

block as a “puzzle piece” is a frequently-used form for both

tangible and graphical programming blocks, such as the

programming blocks of Strawbies, ScratchJr, Cozmo+Code

Lab [65], Codeable Crafts [61], and Run Marco! [63]. Figure

1 (b) and (c) show the puzzle-form programming blocks of

Strawbies and ScratchJr, respectively.

Learning & Literacy IDC 2018, June 19–22, 2018, Trondheim, Norway

291

Figure 1. The programming blocks of (a) Bee-Bot [53], (b)

Strawbies [24], and (c) ScratchJr [70].

Most of the programming commands included by kits

involve motion such as moving forward or turning left. Some

kits include other command blocks such as function blocks,

data blocks, and special-effect blocks. For example, in

Cubetto [42], children can create a small code block and call

the block in the main function through a function block, as

shown in Figure 2. roBlocks includes sensor blocks of light,

sound, touch, and distance which children can use to build

an interactive robot. Strawbies allows children to create

special animations for the game sprites, such as tornado and

flashlight effects. In addition to basic motion commands,

COJI [68] also allows children to program the expression of

the COJI robot through inserting (a sequence of) emojis in a

block of code.

Figure 2. An illustration of the function block of Cubetto [42].

A small function block A is called in the main function by the

blue function tile B in this example.

Programmed robots or sprites

Most kits enable children to program either physical robots

or virtual sprites. Typically, for kits with physical robots,

only one robot is programmed each time, while for kits with

virtual sprites, several sprites can be programmed at the same

time. All of the physical robots move around using a wheel.

Some robots borrow the forms of animals, such as Robot

Mouse, Bee-Bot, and Blue-Bot. Sensors, lights, and sound

effects are embedded in some robots to enrich the robots’

interaction with the environment and/or visualize how a

robot is executing a program step-by-step, such as Code-a-

pillar [15], Electronic Blocks [56], and Thymio Robot.

Most virtual kits are game-based, which require children to

create programs to control game sprite(s) to finish certain

tasks. For example, LightBot [30] is a coding puzzle game

that asks children to program the movement of a virtual robot

and light up bulbs. With Move the Turtle, children can

program the motion of a turtle sprite to complete different

tasks like drawing polygons. A few virtual kits enable other

activities like ScratchJr and Codeable Crafts, which support

creating interactive stories and animations; and Bitsbox [59],

which guides children to create their own apps.

Supporting materials

Kits typically include supporting materials, such as maps,

craft materials, and storybooks, to enrich the playing and

learning experience for children. For example, Cubetto

provides physical adventure maps, which children can use to

move around the robot and facilitate their storytelling.

Additionally, children can also attach pens to the Cubetto

robot and draw its moving tracks, and even decorate the robot

with craft materials. ScratchJr [70] and Thymio Robot

provide activity, curriculum, and assessment designs for

their use in classroom settings for teachers and students.

Virtual kits usually have rich scenes and different playing

levels for children to engage with, such as Cargo-Bot [60]

and The Foos [64].

Perspective 2: Examining computational concepts and
practices

One of the main goals of this survey is to examine how

existing kits enable young children to explore computational

thinking ideas. We use the computational framework from

Brennan and Resnick [5] to examine what kinds of

computational concepts and practices may be explored by

children and how each kit supports that exploration. This

framework includes seven computational concepts

(Sequences, Events, Parallelism, Loops, Conditionals,

Operators, and Data) and four computational practices (being

incremental and iterative, testing and debugging, reusing and

remixing, abstracting and modularizing), see Table 2 and

Table 3.

Computational concepts

Sequences are the most widely supported computational

concept among the surveyed kits. Many kits support this

concept by enabling children to express their ideas through

programming the motion of physical robots or virtual sprites.

Learning & Literacy IDC 2018, June 19–22, 2018, Trondheim, Norway

292

A few kits also support Sequences by programming the

robots’ light and/or sound effects, such as Dash & Dot [55].

Loops are another widely supported computational concept.

In tangible programming environments, Loops are realized

through encapsulating a sequence of blocks between a start

repeat block and an end repeat block, as shown in Figure 3

(a). In graphical programming environments, repeat blocks

are typically represented as a “C” shape and repeatedly run

the blocks inside this shape, as shown in Figure 3 (b).

Figure 3. (a) The repeat and end-repeat blocks of KIBO [28];

(b) The repeat block of ScratchJr [70], which is a rotated “C”

shape.

Events are typically supported by start or trigger buttons. For

example, with Cubetto, children can press a blue button (the

button C in Figure 2) on the control board to make the robot

execute their created program. Some kits also support Events

through the interaction between sprites or robots, such as

Dash & Dot. The robot Dot can cause robot Dash to move,

light up, or play a sound. Most Conditionals are supported in

an implicit way, namely that children are not directly

exposed to “if-then” statements, but rather program

instructions based on different conditions or events. We

found three main approaches: (1) sensors are usually

embedded in physical robots to sense different

environmental conditions so that the robots could be

programmed to react accordingly; (2) for physical robots

without sensors, maps are usually provided for children to

decide how the robots would react to different conditions on

a map; and (3) for virtual platforms, a series of commands or

special effects like animations, sounds, and light effects

could be triggered when sprites interact with other objects on

the screen. A few kits also provide “if” blocks with built-in

logic blocks to create a conditional code, such as Dr. Wagon

as shown in Figure 4.

Figure 4. The if blocks of Dr. Wagon [6]: the left and right

ones. In this case, if the robot is above a patch of red, it will

turn left.

Parallelism is primarily supported by virtual and hybrid kits

through controlling the motion of several sprites or robots

simultaneously or programming the motion, light and sound

effects of a sprite at the same time. For example, with Dash

& Dot, children can program the robots Dot and Dash to

interact with each other; two Curlybots [17] could be

synchronized to communicate and run together; and in

ScratchJr, several sprites can be programmed to act

simultaneously, or a sprite can be programmed to move, play

sound, and change size at the same time.

Data is supported by adjusting parameter values such as the

motion, rotation, and loop increments. As shown in Figure 1

(b), in Strawbies, a Data block “2” is connected to the “walk”

block. Five physical kits in the survey, i.e. Robot Mouse,

Bee-Bot, Blue-Bot, Pro-Bot, and Cubetto, implicitly support

Data by asking children to repeatedly press the same motion

button for a certain number of times, or connecting the same

coding blocks together to set parameter values. Operators are

the least represented computational concept across all the

kits surveyed. In roBlocks, which includes logic operators

like “Not”, “And”, and “Or,” when an “And” block is added

to the center of two sensors, the corresponding Actuator

block can operate only when both sensors are activated.

Additionally, Move the Turtle and Puzzlets Starter Pack

Game [12] include data manipulation, which involves basic

mathematical skills, such as adding and subtracting.

Computational practices

The four computational practices are (1) being incremental

and iterative, (2) testing and debugging, (3) reusing and

remixing, and (4) abstracting and modularizing. All the

surveyed kits support being incremental and iterative by

allowing mistakes and supporting an unlimited number of

attempts. Children can continuously test their code during

the design process to check if their code works properly and

debug the problems if something goes wrong.

To assess remixing and reusing, we looked for features that

supported children to share and build on others’ projects.

Most of the surveyed kits do not explicitly support this

feature. ScratchJr includes a localized sharing feature that

Learning & Literacy IDC 2018, June 19–22, 2018, Trondheim, Norway

293

enables children to share projects across devices. Cargo-Bot,

a puzzle game which asks children to program a robot to

move crates, allows children to record the playing process

and share their solutions on YouTube. Compared to the other

three computational practices, relatively few kits support

abstracting and modularizing. The ones do support it do so

by building a small block of code which can be called in

another code sequence. For example, children can build a

small function in Cubetto, Light Bot, RoboZZLe, and The

Foos. The Digital Dream Lab tabletop puzzle block system

also supports the computer science concepts of class and

object.

Perspective 3: Examining Expressivity

We define expressivity as the extent to which a kit enables

children to explore a range of projects based on their diverse

ideas and interests. To examine a kit’s expressivity, we

reviewed its range of activities and possibilities based on

what is claimed by a kit’s designers and manufacturers.

Kits range in the level of instructions or pre-determined

activities. For example, BitsBox provides step-by-step

instructions for children to create a variety of pre-determined

games. With Lightbot, children use a subset of coding

blocks to program a virtual robot to light up all the blue

squares in a scene, as shown in Figure 5. Some kits use

narrative as a way to structure children’s interactions with

computational ideas. In Roberto, children can read a physical

storybook and, at different points in the story, program

characters using a mobile device and physical programming

block stickers [20]; In Hello Ruby, children can follow the

adventures of a young girl and her friends. After each

chapter, children can engage in different activities that allow

them to explore computational concepts and skills [31].

A common activity among many kits is moving a robot or

sprite around a space. Some kits aim to constrain a robot’s or

sprites movement with the goal of engaging children in

challenges. In most game-based virtual and hybrid kits like

Light Bot, Move the Turtle, Robozzle, and Strawbies,

children are tasked with programming sprites to move

through a maze or to move within a space to collect items

before moving onto other levels. Other kits include resources

that facilitate movement within a map of different regions. In

Cubetto, children can move a wooden robot within a flat

adventure map that has illustrated lakes and grassy areas.

Figure 5. A screenshot of Lightbot game. In this case, players

are required to use the bottom four blocks to program the

Lighbot to light up the blue square.

Many physical kits support some degree of free exploration,

enabling children to decide the routes and destinations for a

robot, such as Thymio Robot, Cozmo+Code Lab, and

BeeBot. Kits that support storytelling typically allow open-

ended exploration of this trajectory. While the Roberto

storybook provides a beginning, it asks children to develop

their own endings. In ScratchJr and Codeable Crafts,

children can create any kind of story. Some kits encourage

children to personalize their robots by decorating them with

craft materials, such as Cubetto, Dr. Wagon, and

meeperBOTS.

While some kits may support individual and group

engagement such as KIBO, only a few kits claim to be

explicitly designed for group play. For example, Robot

Turtles requires at least 2 players at the same time; Hello

Ruby includes activities designed to support kids and parents

to work together, and Torino [52] supports collaborative

learning for children with mixed-visual abilities, i.e.

visually-impaired children can play Torino blocks with

children without visual impairments.

DISCUSSION

In this section, we discuss design opportunities for

computational kits for young children. As we discuss these

possibilities, we describe additional kits or technologies that

we found inspiring. For every possibility discussed, we need

to bear in mind that a kit needs to be developmentally

appropriate for young children. We also understand that new

possibilities for kits may expand what is considered

developmentally appropriate for young children [4].

Expanding how children code

Most of the kits we examined use tangible or graphical

blocks to support programming. It would be interesting to

explore other forms of programming, such as gesture, body

movement, and sound. One example is the video sensing

feature in Scratch [25]. Children can create projects in

Scratch that use a computer’s camera to simulate object and

Learning & Literacy IDC 2018, June 19–22, 2018, Trondheim, Norway

294

gesture recognition. For example, the Scratch project Simple

Bubbles [8] uses the camera to capture hand movements as

the input to pop the bubbles. Even though video sensing is

an input method rather than a programming method in this

example, such interaction can inspire new programming

methods.

Additionally, many of the surveyed physical and hybrid kits

have separate programming blocks and robots or sprites, and

most of their programming block designs adopt either tile or

cube forms. While a few kits have different designs of coding

blocks, such as the embedded coding buttons on Blue-Bot, it

would be interesting to explore how coding blocks could be

designed in other forms, particularly beyond tiles or cubes.

For example, Ozobot robot [71] allows children to program

its motion by drawing lines of different colors. Tangible

Programming with Train [35] uses code bricks which are

also part of the train track to program a train’s motion.

Instead of having separated coding blocks and controlling

robots, the programming blocks of roBlocks [47] can be

stacked together to create a robot which is also controlled by

these blocks.

Expanding what children can code

In a paper reflecting on the changing nature of children’s

programming, Michael Eisenberg and colleagues discussed

expanding the possibilities to include more programmable

materials, settings, and surfaces [14]. These new possibilities

included embedding computing in everyday materials and

objects like paper, textiles, and other media to enable people

to engage in computing in more familiar and natural ways.

With Chibitronics Love to Code [72], children can build

interactive paper circuits and program LEDs, using a

microcontroller called the Chibi Chip. Proctor and

colleagues built an interactive fiction web application that

combined textual literacy and computational literacy [43].

By incorporating computational concepts like sequences,

loops, and conditionals into interactive fiction games,

readers can choose how storylines develop and unfold

different story experiences. We also see possibilities to

explore other programmable objects or phenomena, such as

light, sound, or even people. One such example is Unruly

Splats [2], where children can program a physical tile to light

up or turn off when touched. As children interact with their

programmed tiles, children can run around and jump on the

tiles to play active games, essentially programming

children’s body movements. With COJI robot, children can

program the emotion expression on the screen of the robot.

Music Blocks [35] uses sound as a programming medium,

with which children can create a melody by inserting cubical

blocks that represent different musical phrase into a music

player.

For virtual and hybrid kits that include one or more sprites,

the user interfaces are highly homogeneous, i.e. either

through a PC screen or a mobile-device screen. It would be

interesting to explore other forms of interfaces that can

enrich children’s interactions with computational kits, such

as holographic projection, virtual reality (VR), and

augmented reality (AR). These technologies have already

been deployed to promote children’s learning and playing. In

the Virtual Environment Interactions project, young people

firstly learned dance moves, then programmed similar dance

moves for characters in VR [10]. An AR-based video-

modeling storybook was developed to help children with

autism improve their perceptions and judgments of facial

expressions and emotions [7].

Finally, one of the construction kit principles proposed by

Resnick and Silverman encourage designing for “wide

walls”, or enabling children to explore many different

projects to represent their different interests [42]. We see the

potential for kits to expand their expressivity, or the range of

activities that children can explore and engage in. While

step-by-step instructions or specific challenges can help to

scaffold children’s learning experiences, more open-ended

systems can enable children to express ideas, develop their

own goals, and pursue more personally meaningful projects.

Expanding who can code

Most of the surveyed kits, especially the virtual kits, are

optimized for individual engagement. While some kits

support sharing projects across a local network of mobile

devices, an online community can expand who children can

learn with. In the Scratch online community, children can get

feedback, work on projects together, and learn from other

creators [46]. Remixing, or building on others’ project can

be a meaningful pathway to support computational thinking

[11].

In addition to expanding children’s networks, computational

kits could also consider more explicitly the kinds of roles that

parents or other adult caregivers can play. Hello Ruby, for

example, designed activities with children and adult

caretakers in mind. Online platforms could also create spaces

for parents and adult caregivers to share their experiences in

working with their children and learn about more

opportunities for their families.

Finally, we see broadening participation in computing as an

important consideration when exploring new possibilities for

kits. We especially want to highlight the opportunities for

kits to support children with disabilities, such as children

with visual, hearing, and physical disabilities. Among the

surveyed kits, only Torino is specifically designed to help

visually-impaired children learn computational concepts and

skills. We suggest that more kits be designed to meet the

needs of children with disabilities. Some researchers have

suggested design principles and strategies for designing

interactive technologies for children with disabilities. For

example, Meryl Alper and colleagues [1] suggested that, in

addition to the three dimensions— “low floors”, “high

ceilings”, and “wide walls”—proposed by Resnick and

Silverman [45], designers should consider the fourth

dimension of “reinforced corners”, namely to support

exceptional children who can thrive at the widest walls,

highest ceilings, and lowest floors. Juan Pablo Hourcade

Learning & Literacy IDC 2018, June 19–22, 2018, Trondheim, Norway

295

summarized suggestions for designing participatory

technologies and activities for children with autism, such as

engaging children deeply, involving stakeholders, and

designing the ecology around the technology [23]. These

strategies can serve as guiding principles for designing

computational kits for young children with disabilities.

Expanding what children can explore

Some of the computational concepts such as Sequences,

Loops, Events, and Conditionals are well supported by

existing kits. More specifically, Sequences are supported by

programming a series of instructions for a robot or sprite;

Loops are supported through repeat blocks that can execute

a block of code repeatedly; Events are achieved by a physical

or graphical start button that triggers the movement of

programmed robots or sprites; Conditionals are supported

through programming how sprites or robots react to certain

conditions, which are typically in response to sensors or

adventure maps; Data is primarily supported by adjusting the

values of a parameter, such as the distance in motion or how

many times a loop repeats; Parallelism can be achieved

through programming more than one robot or sprite within a

kit at the same time, or coordinating the motion, light, and

sound effects of the kit simultaneously.

It would be interesting to explore how these computational

concepts can be supported through other approaches. For

example, how could visual, auditory, or tactile objects be

programmed to support Sequences and Loops in addition to

a robot’s or sprite’s motion? Using BlockyTalky [49],

children can create interactive music systems or digital

instruments while exploring concepts such as distributed

systems. For Events, what other kinds of actions, beyond a

start and stop button, can children engage in to trigger actions?

Depth and 3D sensors like the XBox Kinect [73] can open

up possibilities for people to use body movements or

gestures to trigger events.

While a computational kit does not necessarily need to

support most computational concepts and practices, there are

opportunities for exploring the less prevalent computational

concepts and practices, such as Operators. It would be

interesting to explore the possibilities with logical operations

such as “And” and “Or”. While many kits support

computational practices like experimenting and iterating, we

see potential to more explicitly support practices such as

debugging and abstraction. For example, Robo-blocks [39]

is designed to support debugging activities for early primary

school children through the use of debugging flags to

identify and mark coding problems. As we explore more

ways to support children to explore computational concepts

and practices, we can open up more opportunities for

children to create, invent, and express themselves in new and

empowering ways.

CONCLUSION

Cultivating computational thinking can enable young

children to engage with powerful ideas, to express

themselves in new ways, and to understand the changing and

increasingly digital world around them. Our survey provides

an overview of computational kits for young children (ages

7 and under) that have emerged across academia and industry.

The findings reveal the commonalities across existing kits

and highlight ways for designers and researchers to expand

the possibilities for children to create, explore, and play with

computing. The surveyed kits span across physical, virtual,

and hybrid kits and were examined across three perspectives:

design features, how children could explore computational

concepts and practices, and what range of activities or

projects children could engage in.

When examining their design features, kits often used blocks

or puzzle-pieces to represent code that controls robots or

virtual sprites. The most common computational concepts

that children could explore were sequences, loops, events,

and conditionals. Finally, kits ranged in the activities and

projects they enabled. Some were constrained to specific

challenges such as moving through a maze, while some

provided some scaffolds such as a narrative to structure the

experience. Relatively few kits enabled more open-ended

engagement and creation.

Through our survey, we see possibilities for expanding how

children can code, what they can code, who can code, and

what they can explore. These possibilities include new

modes of expression such as body motion or new media such

as light and sound. We also see possibilities for who

designers can better support, such as more explicit roles for

adult caregivers and expanding possibilities for children with

disabilities. Finally, while many kits enable the exploration

of some computational concepts and practices, we see

opportunities to expand how these concepts are supported as

well as new concepts they could explore.

ACKNOWLEDGMENTS

The authors thank Marissa Wajda for helping get the toys and

kits survey started, Fujiko Robledo Yamamoto for reviewing

the paper, the anonymous reviewers for helpful feedback,

and colleagues such as Victor Lee and Michael Horn who

shared their in-progress work with us on computational kits

for children.

SELECTION AND PARTICIPATION OF CHILDREN

No children participated in this work.

REFERENCES

1. Meryl Alper, Juan Pablo Hourcade, and Shuli Gilutz.

2012. Adding Reinforced Corners: Designing

Interactive Technologies for Children with Disabilities.

Interactions 19, 6: 72–75.

https://doi.org/10.1145/2377783.2377798

2. David Kunitz Amon Millner, Bryanne Leeming, Paayal

Khanna, Daniel Ozick. Unruly Splats. Retrieved from

https://www.kickstarter.com/projects/bryanneleeming/

unruly-splats-active-stem-play

3. Marina Umaschi Bers. 2017. Coding as a playground:

Programming and computational thinking in the early

childhood classroom. Routledge.

Learning & Literacy IDC 2018, June 19–22, 2018, Trondheim, Norway

296

4. Marina Umaschi Bers and Michael S Horn. 2010.

Tangible programming in early childhood: Revisiting

developmental assumptions through new technologies.

High-tech tots: Childhood in a digital world: 1–32.

5. Karen Brennan and Mitchel Resnick. 2012. New

frameworks for studying and assessing the

development of computational thinking. annual

American Educational Research Association meeting,

Vancouver, BC, Canada: 1–25.

https://doi.org/10.1.1.296.6602

6. K Chawla, M Chiou, A Sandes, and P Blikstein. 2013.

Dr. Wagon: A “stretchable” toolkit for tangible

computer programming. ACM International

Conference Proceeding Series: 561–564.

https://doi.org/10.1145/2485760.2485865

7. Chien Hsu Chen, I. Jui Lee, and Ling Yi Lin. 2016.

Augmented reality-based video-modeling storybook of

nonverbal facial cues for children with autism spectrum

disorder to improve their perceptions and judgments of

facial expressions and emotions. Computers in Human

Behavior 55: 477–485.

https://doi.org/10.1016/j.chb.2015.09.033

8. Chrisg. Simple Bubbles. Retrieved from

https://scratch.mit.edu/projects/10005522/

9. Douglas H Clements. 1984. Effects of Computer

Programming on Young Children’s Cognition Effects

of Computer Programming on Young Children’s

Cognition. 76, NOVEMBER 1984: 1051–1058.

https://doi.org/10.1037/0022-0663.76.6.1051

10. Shaundra B. Daily, Alison E. Leonard, Sophie Jörg,

Sabarish Babu, and Kara Gundersen. 2014. Dancing

Alice: exploring embodied pedagogical strategies for

learning computational thinking. Proceedings of the

45th ACM technical symposium on Computer science

education - SIGCSE ’14: 91–96.

https://doi.org/10.1145/2538862.2538917

11. Sayamindu Dasgupta, William Hale, Andrés Monroy-

Hernández, and Benjamin Mako Hill. 2016. Remixing

as a Pathway to Computational Thinking. 1438–1449.

https://doi.org/10.1145/2818048.2819984

12. Digital Dream Lab. Puzzlets. Retrieved from

http://www.digitaldreamlabs.com/

13. H Ehsan, C Beebe, and M E Cardella. 2017. Promoting

computational thinking in children using apps. ASEE

Annual Conference and Exposition, Conference

Proceedings 2017–June. Retrieved from

https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85030538569&partnerID=40&md5=fd46714b61a8323

926a755f4bace060d

14. Michael Eisenberg, Nwanua Elumeze, Michael

MacFerrin, and Leah Buechley. 2009. Children’s

programming reconsidered. Proceedings of the 8th

International Conference on Interaction Design and

Children - IDC ’09: 1.

https://doi.org/10.1145/1551788.1551790

15. Fisher-Price. Think & Learn Code-a-pillar. Retrieved

from http://fisher-price.mattel.com/shop/en-us/fp/think-

learn-code-a-pillar-dkt39

16. Louise P. Flannery, Elizabeth R. Kazakoff, Paula

Bontá, Brian Silverman, Marina Umaschi Bers,

Mitchel Resnick, Elizabeth R. Kazakoff, Marina

Umaschi Bers, Paula Bontá, and Mitchel Resnick.

2013. Designing ScratchJr: Support for Early

Childhood Learning Through Computer Programming.

Proceedings of the 12th International Conference on

Interaction Design and Children (IDC ’13): 1–10.

https://doi.org/10.1145/2485760.2485785

17. P. Frei, V. Su, B. Mikhak, and H. Ishii. 2000. Curlybot:

designing a new class of computational toys.

Proceedings of the SIGCHI conference on Human

factors in computing systems 2, 1: 129–136.

https://doi.org/http://doi.acm.org/10.1145/332040.3324

16

18. Google. Blocky Games. Retrieved from https://blockly-

games.appspot.com/?lang=en

19. Michael S. Horn, R. Jordan Crouser, and Marina U.

Bers. 2012. Tangible interaction and learning: The case

for a hybrid approach. Personal and Ubiquitous

Computing 16, 4: 379–389.

https://doi.org/10.1007/s00779-011-0404-2

20. Michael S Horn, Sarah Alsulaiman, and Jaime Koh.

2013. Translating Roberto to Omar : Computational

Literacy, Stickerbooks, and Cultural Forms. IDC 2013:

120–127. https://doi.org/10.1145/2485760.2485773

21. Michael S Horn, Erin Treacy Solovey, R Jordan

Crouser, and Robert J K Jacob. 2009. Comparing the

use of tangible and graphical programming languages

for informal science education. Proceedings of the 27th

international conference on Human factors in

computing systems CHI 09 32: 975.

https://doi.org/10.1145/1518701.1518851

22. Michael S Horn, Erin Treacy Solovey, and Robert J.K

Jacob. 2008. Tangible Programming and Informal

Science Learning: Making TUIs Work for Museums.

IDC ’08 Proceedings of the 7th international

conference on Interaction design and children: 194–

201. https://doi.org/10.1145/1463689.1463756

23. Juan Pablo Hourcade. 2017. PARTICIPATORY

DESIGN WITH CHILDREN IN THE AUTISM

SPECTRUM. Participatory Design for Learning:

Perspectives from Practice and Research: 111.

24. Felix Hu, Ariel Zekelman, Michael Horn, and Frances

Judd. 2015. Strawbies: Explorations in Tangible

Programming. Proceedings of the 14th International

Conference on Interaction Design and Children - IDC

’15: 410–413.

https://doi.org/10.1145/2771839.2771866

25. Ting-hsiang Tony Hwang. 2012. Exploring Real-time

Learning & Literacy IDC 2018, June 19–22, 2018, Trondheim, Norway

297

Video Interactivity with Scratch. Massachusetts

Institute of Technology.

26. INSPIRE Research Institute for Pre-College

Engineering. 2017. 2017 Engineering Gift Guide.

Retrieved from

https://engineering.purdue.edu/INSPIRE/EngineeringG

iftGuide

27. Filiz Kalelioğlu, Yasemin Gülbahar, and Volkan

Kukul. 2016. A Framework for Computational

Thinking Based on a Systematic Research Review.

Baltic J . Modern Computing 4, 3: 583–596.

28. KinderLab Robotics. KIBO. Retrieved from

http://kinderlabrobotics.com/kibo/

29. Learning Resources. Robot Mouse. Retrieved from

https://www.learningresources.com/product/learning+e

ssentials--8482-

+stem+robot+mouse+coding+activity+set.do

30. LightBot Inc. Lightbot. Retrieved from

http://lightbot.com/index.html

31. Linda Liukas. Hello Ruby. Retrieved from

https://www.kickstarter.com/projects/lindaliukas/hello-

ruby

32. Caitlin K Martin, Nichole Pinkard, Sheena Erete, and

Jim Sandherr. 2016. Connections at the Family Level:

Supporting Parents and. In Moving Students of Color

from Consumers to Producers of Technology. IGI

Global, 220–244.

33. Dana Charles McCoy, Hirokazu Yoshikawa, Kathleen

M. Ziol-Guest, Greg J. Duncan, Holly S. Schindler,

Katherine Magnuson, Rui Yang, Andrew Koepp, and

Jack P. Shonkoff. 2017. Impacts of Early Childhood

Education on Medium- and Long-Term Educational

Outcomes. Educational Researcher 46, 8: 474–487.

https://doi.org/10.3102/0013189X17737739

34. Timothy S. McNerney. 2000. Tangible Programming

Bricks : An approach to making programming

accessible to everyone. Media, June 1983.

35. Timothy S. McNerney. 2004. From turtles to Tangible

Programming Bricks: Explorations in physical

language design. Personal and Ubiquitous Computing

8, 5: 326–337. https://doi.org/10.1007/s00779-004-

0295-6

36. Modular Robotics. Cubelets. Retrieved from

https://www.modrobotics.com/cubelets/

37. National Research Council. 2011. Report of a

workshop on the pedagogical aspects of computational

thinking. National Academies Press.

38. Next is Great. Move the Turtle. Retrieved from

http://movetheturtle.com/

39. N Nusen and A Sipitakiat. 2012. Robo-blocks: a

tangible programming system with debugging for

children. IDC ’12 Proceedings of the 11th

International Conference on Interaction Design and

Children: 98–105.

https://doi.org/10.1145/2307096.2307108

40. Hyunjoo Oh, Anisha Deshmane, Feiran Li, and JY

Han. 2013. The digital dream lab: tabletop puzzle

blocks for exploring programmatic concepts. Tei 2013:

51–56. https://doi.org/10.1145/2460625.2460633

41. Plobot Team. Plobot. Retrieved from

http://plobot.com/#home

42. Primo. Cubetto. Retrieved from

https://www.primotoys.com/

43. Chris Proctor. 2017. Interactive fiction : Weaving

together literacies of text and code. 555–560.

https://doi.org/10.1145/3078072.3084324

44. Hayes Solos Raffle, Amanda J Parkes, and Hiroshi

Ishii. 2004. Topobo: a constructive assembly system

with kinetic memory. System 6, 1: 647–654.

https://doi.org/10.1145/985692.985774

45. Mitchel Resnick and Brian Silverman. 2005. Some

Reflections on Designing Construction Kits for Kids.

Proceeding of the 2005 conference on Interaction

design and children (IDC ’05): 117–122.

https://doi.org/10.1145/1109540.1109556

46. Natalie Rusk. 2016. Makeology: Identities, Materials,

and Educational Outcomes. In Makeology:

Makerspaces as Learning Environments, Y. K.

Peppler, E. Halverson, Kafai (ed.).

47. Eric Schweikardt and Mark D Gross. 2006. roBlocks: a

robotic construction kit for mathematics and science

education. Proceedings of the 8th international

conference on Multimodal interfaces: 72–75.

https://doi.org/10.1145/1180995.1181010

48. Dan Shapiro. Robot Turtles. Thinkfun. Retrieved from

http://www.robotturtles.com/

49. R Benjamin Shapiro, Rebecca Fiebrink, Matthew

Ahrens, and Annie Kelly. 2016. BlockyTalky: A

Physical and Distributed Computer Music Toolkit for

Kids. Proceedings of the International Conference on

New Interfaces for Musical Expression 16: 427–432.

Retrieved from

http://www.nime.org/proceedings/2016/nime2016_pap

er0084.pdf

50. Amanda Sullivan, Mollie Elkin, and Marina Umaschi

Bers. 2015. KIBO Robot Demo: Engaging Young

Children in Programming and Engineering.

Proceedings of the 14th International Conference on

Interaction Design and Children - IDC ’15: 418–421.

https://doi.org/10.1145/2771839.2771868

51. Target. Coding Toys. Retrieved from

https://www.target.com/c/coding/-/N-4sj2p

52. Anja Thieme, Cecily Morrison, Nicolas Villar, Martin

Grayson, and Siân Lindley. 2017. Enabling

Collaboration in Learning Computer Programing

Inclusive of Children with Vision Impairments.

Learning & Literacy IDC 2018, June 19–22, 2018, Trondheim, Norway

298

Proceedings of the 2017 Conference on Designing

Interactive Systems - DIS ’17: 739–752.

https://doi.org/10.1145/3064663.3064689

53. TTS Group. Bee Bot. Retrieved from http://www.tts-

group.co.uk/bee-bot-rechargeable-floor-

robot/1001794.html

54. J M Wing. 2006. Computational Thinking.

Communications of the ACM.

55. Wonder Workshop. Dash & Dot. Retrieved from

https://www.makewonder.com/

56. P. Wyeth and Gordon Wyeth. 2001. Electronic blocks:

Tangible programming elements for preschoolers.

Proceedings of the Eighth IFIP TC13 Conference on

Human-Computer Interaction: 496–503. Retrieved

from

http://archive.itee.uq.edu.au/~peta/WyethInteract.pdf

57. Oren Zuckerman and Mitchel Resnick. 2003. A

physical interface for system dynamics simulation. CHI

’03 extended abstracts on Human factors in computer

systems - CHI ’03: 810.

https://doi.org/10.1145/765999.766005

58. Pro-Bot. Retrieved from https://www.bee-

bot.us/probot.html

59. Bits Box. Retrieved from https://bitsbox.com/

60. Cargo-Bot. Retrieved from

https://twolivesleft.com/CargoBot/

61. Codeable Crafts. Retrieved from

https://www.codeablecrafts.com/

62. RoboZZle. Retrieved from http://www.robozzle.com/

63. Run Marco! Retrieved from

https://www.brainpop.com/games/runmarco/

64. The Foos. Retrieved from

https://codespark.com/webgl/

65. COZMO + Code Lab. Retrieved from

https://www.anki.com/en-us/cozmo/code-lab

66. Thymio Robot. Retrieved from

https://www.thymio.org/en:thymio

67. meeperBOTS. Retrieved from

https://meeperbot.com/pages/meeperbots

68. COJI. Retrieved from https://wowwee.com/coji

69. Blue-Bot. Retrieved from https://www.bee-

bot.us/bluebot.html

70. ScratchJr. Retrieved from http://scratchjr.org

71. Ozobot. Retrieved from https://ozobot.com/

72. Chibitronics Love to Code: Chibi Chip & Cable.

Retrieved from https://chibitronics.com/shop/love-to-

code-chibi-chip-cable/

73. Kinect. Retrieved from https://www.xbox.com/en-

US/xbox-one/accessories/kinect

Learning & Literacy IDC 2018, June 19–22, 2018, Trondheim, Norway

299

